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Using the ladder operator technique, a construction of the supersymmetric 
Hamiltonian is proposed. We show that the accidental degeneracies associated 
with the Coulomb and isotropic oscillator problems may be attributed to the 
existence of a supersymmetry of the Hamiltonians. 

1. I N T R O D U C T I O N  

The connection between the Schr6dinger factorization method 
(Schrfdinger,  1940, 1941 ) and supersymmetric quantum mechanics ( Witten, 
1981) has been developed (see, for instance, Cooper  and Freedman,  1983) 
and explored (see, for instance, Salmonson and van Holten 1982) by many 
authors. As is well known, the idea of supersymmetry (SUSY) is to relate 
integral spin objects to half-integral ones, and quite interestingly, all its 
essential features are present (Ravndal,  1984) in field theories of  (1 +0)  
dimensions. 

The algebraic properties of  the factorization method and their link to 
SUSY rest on the most important  fact that if the ground-state wave function 
is known completely, then the factorization of the Hamiltonian follows as 
a natural consequence (Kwong and Rosner, 1986). Indeed, this is how 
SUSY in quantum mechanics has been formulated in terms of the factori- 
zation method, and its relationship to elementary quantum mechanical 
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systems has been investigated (Gendenshtein and Krive, 1985; Sukumar, 
1985, 1986). It is also not difficult to see from this work that the factorizability 
criterion and supersymmetric properties are common to all one-dimensional 
potentials. 

The question we raise in this paper is how to carry out judiciously the 
procedure of factorization for three-dimensional potentials and construct 
partner Hamiltonians, which are related by SUSY. That SUSY may work 
differently for radial problems has been noted by a number of authors 
(Haymaker and Rau, 1986; Lahiri et al., 1987). It should be clear from this 
work that since the radial problem is not truly one dimensional, the construc- 
tion as well as the interpretation of SUSY are problematical. The standard 
one-dimensional approach of writing down the superpotential and reading 
off energy degeneracies from the partner Hamiltonians may lead to fallacious 
results. From this point of view, the method of Kostelecky and Nieto (1984) 
has been questioned by Haymaker and Rau (1986). 

It may be noted that Kostelecky and Nieto have proposed a supersym- 
metric construction of the hydrogen atom by subjecting the radial part of 
the Schr/Sdinger equation to a one-dimensional treatment. As a consequence, 
they have found that the supersymmetric partner Hamiltonians describe the 
hydrogenic n s - s p  degeneracy. They have thus interpreted their results as 
giving a supersymmetric connection between various atoms. On the other 
hand, Haymaker and Rau have advocated a transformation of the half-line 
problem to the full-line one, thereby passing from the radial to the Morse 
problem. As a result, their scheme 4 yields a connection between isoelectronic 
ions, in contrast to those between states of different atoms. 

In this work, we propose a method for the construction of the supersym- 
metric Hamiltonian to account for the above-mentioned "accidental" 
degeneracies. Employing the ladder operator techniques, we have developed 
a scenario which is straightforward and avoids complicated manipulations 
of the differential equations. We have considered the radial Coulomb and 
the isotropic oscillator problems and have found that the accidental 
degeneracies associated with them may be connected with the existence of 
SUSY of the governing Hamiltonian. In particular, we have shown that 
SUSY can account for the n s - n p  degeneracy of the Coulomb problem, 
which is consistent with similar claims by Kostelecky and Nieto (1984) and 
Kostelecky et al. (1985). We should mention that throughout this work, we 
have avoided any reference to the superpotential, but have formulated a 
self-consistent scenario involving lowering and raising operators. Indeed, 
this is a convenient framework in which the standard difficulties with the 
three-dimensional construction of SUSY are avoided. 

4The approaach of  Haymaker Rau is beset with some difficulties [in this regard see Lahiri 
et al. (1987)]. 
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2. SUSY HAMILTONIAN 

Since the degeneracy due to SUSY arises by simultaneously destroying 
one bosonic (b) quantum and creating one fermionic (a) quantum (or vice 
versa), the corresponding generators behave like ba + or b+a. 

One may define SUSY generators as 

Q+ = x/(2to)ba +, Q -  =~/(2to)b+a (1) 

both of which commute with the SUSY Hamiltonian 

Hss = (to/2)(a+ a + b + b) 

It may be verified that Q§ and Q- as defined in (1) satisfy 

[ Q+, Hss] = [ Q-, H~] = 0 

Also, one has 

or 
{Q+, Q+} = {Q-, Q-} = 0 

(Q+)2  = ( Q - ) 2  = 0 

While the bosonic creation and annihilation operators can be represen- 
ted in terms of q and p, the corresponding ones for the fermionic system 
can be represented in terms of the Pauli matrices: 

a= t r -= (01  00 ) ,  a + = t r + = ( 0  0 10) 

where 

{O'-- , or+} "~ "~, Or3-----(~ __~)' "~=(10 ~) 

In this representation the SUSY Hamiltonians can be written as 

Hss = (to/2)b+b'd + (w/2)tr3 

2 b + 

(2) 

3. METHOD OF FACTORIZATION 

For a spherically symmetric potential the SchrSdinger equation separ- 
ates into a radial and an angular part. The latter may be subjected to a 



186 Lahiri et al. 

SUSY construction. The reduced radial equation with V(r)  having a rotation 
symmetry reads (h = 2m = 1) 

H, Inl)= ETlnl) 

where 

Ht = p 2 +  l ( l+ 1)/ r2+ V(r)  

is the standard radial Hamiltonian.  We label the eigenket I nl) and the energy 
eigenvalue E p by the radial quantum number  n and the angular momentum 
quantum number / .  

To find a suitable form of the ladder operator A which maps I nl) onto 
In'F) requires (Newmarch and Golding, 1978) an effective factorization of 
the Hamiltonian. We set 

A~f A; = Ill + 17; 
(3) 

A;A~ = Hi, + G;, 

where Ft and GI' aare just scalar objects and the operators At and A[  are 
to be defined presently. Before we do so, let us note that the quantity 
AlA~[Allnl) may be evaluated, using (3), as 

A;A~ A, Inl) = ( E? + Ft)A;Inl) 

= ( H r +  Gr)A;lnl)  

Rearranging, one can write 

H;,(A;I nl)) = {E 7 + (F; - G;,)}(A d nl)) 

which expresses that Atlnl) is an eigenket of  H r  with eigenvalue 
t l '  

E;, = E? + (Fl - Gr) 

I f  El = Or ,  we have a degeneracy between states with quantum numbers 
n, I and n', 1'. To fix n' and 1', we choose the shifts n ' =  n - I x  and I ' =  I+A, 
with Ix and A being any integer. That is, 

ET;-x " = E7 (4) 

We shall soon see that n' gets fixed as n ' =  n - 1. 
From equation (4), we then have 

A[AI  = HI + G 
(5) 

AtA~- = Ht+A + Fl 

We now define the operators At and A[  as follows: 

Al[nl) = a Tln - ~z, l+ A) 

ATIn - Ix, l + A ) = flT[nl) 
(6) 
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where a7 and 137 are some constants. Since 

~7 =(n-m l +  a l A ,  lnl) 

B7 -'- (n l lATIn  - ~ ,  / +  a )  

we conclude that the definitions (6) imply that o~' and p~ are complex 
conjugates of  one another: a~' =fl~'*. In other words, the operators A [ A ;  
and A I A [  have the same eigenvalue 1~71 = 

Now, this eigenvalue l a ? f  may be obtained from (3), 

A [ A t l  nl) = (H; + Ft)l nl) 

o r  

]~p12= E?+Ft 

Noting that the operation of  At on I nl) decreases the radial quantum 
number  by /.~, we can construct a sequence of  eigenkets by repetitive 
applications of  At on In/): 

Atlnl )  = a? ln  - tx, l +  3,) 

( At)2[nl) = a ? a ?-~ln  -2/~,  I+2A) 

( a t )m]n l )  = a t ~ "-'~ �9 �9 �9 a ' i -~  - ml~, 1+ mA) 

where m stands for the number  of  times At has been applied. Since the 
above sequence must terminate for a spectrum having a lower bound,  we 
may define Atl0 , l) = 0. It is obvious that in such a case m = n/l~.  Also, since 
the power of  At must be an integer (m being related to the number  of  
applications of  At), consistency with the allowed values of  n requires that 

be set equal to unity. It may be noted that the possible values n can take 
are 0, 1, 2 , . . . .  Relation (4) is thus modified to 

E ~'fA 1 = E ~' (4a) 

Further, since At10, l) = 0, we have n ~ = 0. This fixes Ft as Ft = - E  ~ so that 

1~712 = ~ -  E0 

We can now find a connection with the supersymmetric Hamiltonian 
(2). Since, f rom (6), one may identify At and A[  as lowering and raising 
operators, respectively, we can construct the generators Q+ and Q -  in terms 
of  At and A [ :  

o 
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The Hamiltonian is then given by 

Using (5), the SUSY partner  Hamiltonians for a spherically symmetric 
problem may be obtained as 

H + = a ~ A l  = Il l  - E ~ 
(7) 

H -  = A t A ~  = Hl+x - E ~ 

The above forms for H § and H -  do not seem to have been recognized 
in the context of  SUSY before. With (7) at hand, we are in a position to 
turn to specific problems. 

4. APPLICATIONS 

4.1. Coulomb Potential: V ( r ) = - l / r  

The energy eigenvalues are given by 

E? = - (n + l+  1)-2/4 = - 1 / ( 4 N  2) 

where N is the principal quantum number. A should be obtained from the 
relation (4a). We have 

(n - 1 + l +  A + 1 ) -2 /4  = (n + I +  1 ) -2 /4  

or A = 1. Hence 

H + = / - / i -  E ~ = p 2 +  l ( l +  1)/ r  2 - 1 / r +  ( l +  1)-2/4 

H -  : H~+x - E  ~ = p2+ ( /+  1 ) ( l + 2 ) / r  2 - 1 / r + ( l +  1)-2/4 

Thus it becomes obvious that the energy degeneracy due to SUSY is 
between states of  n, I and n - 1, 1 + 1. This is the so called n s -  np degeneracy. 

4.2. Isotropie Osci l lator Potential: V(r) = r 2 / 4  

The energy eigenvalues are given by (Baumgartner et al., 1985) 

E T = 2 n + l +  3 

Relation (4a) gives A = 2. Hence, from (7), 

H + = Hi - E ~ = p 2 +  l ( l +  1)/r2 + r2/4  - ( l +  3) 

H -  = Ht+A - E ~  + ( l +  2) ( l  + 3 ) / r2  + r 2 / 4 - ( l + ~ )  

We thus find that the energy degeneracy due to SUSY is between states of  
quantum numbers (n, l) and ( n -  1 , / + 2 ) .  
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5. S U M M A R Y  

We have prescribed in a simple way the construction of a supersym- 
metric Hamiltonian with the help of bosonic and fermionic oscillators. We 
have also discussed the ladder operator technique which may be used for 
such a construction. The method developed has been applied to the case 
of the Coulomb and isotropic oscillator problems. We have shown that 
their accidental degeneracies may be attributed to the SUSY of the Hamil- 
tonian. 
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